COURSE PLAN

Course Plan	M-4l4' f D'
Course title	Mathematics for Business and Economics
Aims of the	The subject is basic course which aims to enable students to understand the basic
course	definitions, theorems, principles and methods of Mathematical Economics in order to help them to understand other quantitative disciplines such as: Financial and
	Actuarial Mathematics, Microeconomics, Statistics, Operational Research,
Learning	After completion of this course the student will be able to:
- C	1. Calculate a value of determinant and specify it properties.
outcomes	2. Define a matrix, conduct basic arithmetic operations with matrices and specify
	their properties.
	3. Determine and discuss solutions of system of linear equations and inequalities.
	4. Define a vector and arithmetic operations with vectors.
	5. Define the function and explain basic concepts of function of one variable, and to
	draw its graph. 6. Define a derivative of the function of one variable, interpret it economically and
	geometrically
	7. Define and interpret the basic concepts of integral calculus and apply the definite
	integral to surfaces calculation and to solve economic problems, as well as to
	differential equations.
	8. Define the function of more variable and explain basic concepts, as well as to
	apply partial derivatives to extreme values determination.
	9. Interpret and explain theorems regarding the concepts learned.10. Applies learned concepts and theorems on economic phenomenon and create a
	simpler mathematical- economic models.
List of topics/	Simpler matternation economic models.
name of the	
lecturer(including	
visiting lecturers	
C	
and experts	
where applicable)	Dielia di
Week I (2.10)	Brief introduction to mathematical- economic modelling and to
	Financial mathematics.
	Linear algebra- matrices and determinants. Inverse matrix.
	Application to Leontief Input-Output model (2L- Lecture 1)
	Financial Mathematics (Proportion. Percentage. Simple and
	compound interest) (2E)
Week II (9.10)	
	Cramer's rule. Gauss's algorithm. Rank. Kronecker- Capelli
	theorem. Application to Market and National-income models. (2L-
	Lecture 2)
	Linear algebra (2E)
Week III (16.10)	A real function of a real variable. Elementary functions-
, , ,	characteristics and graphics. Inverse and composite function. Limit
	of function. Euler's number e. Continuous function. Economic
	functions. (2L- Lecture 3)
	Linear algebra (2E)
Week IV (23.10)	Derivative- definition and geometric interpretation. Rules of
***CCK 1 * (23.10)	differentiation- derivation of sum, product and quotient.
	, <u> </u>
	Differentials. Higher derivatives. Chain rule. Inverse function rule.
	(2L- Lecture 4)

	Linear algebra (2E)
Week V (30.10)	
week v (30.10)	Marginal function vs. Elasticity. Growth rate. L' Hospital's rule.
	Monotonic function. Extreme values. Convexity. Inflection point.
	(2L- Lecture 5)
	Calculus (2E)
TT 1 TT (6 11)	Quiz 1- date: 30.10.2025.
Week VI (6.11)	Types of function growth. Characteristics of functions. Graph. (2L-
	Lecture 6)
*** 1 **** (40.44)	Calculus (2E)
Week VII (13.11)	National Holiday- no classes
Week VIII (20.11)	Indefinite integrals- definition and properties. The substitution rule.
	Integration by parts. Integration of some rational functions. (2L-
	Lecture 8).
	Calculus (2E)
	Quiz 2- date: 20.11.2025.
Week IX (27.11)	Definite integral- definition. Newton-Leibniz formula. Geometric
	interpretation of definite integral. Economic applications. (2L-
	Lecture 9)
	Calculus (2E)
Week X (4.12)	First- order ordinary differential equations (ODE). Equations with
	separated variable. First order linear differential equations. (2L-
	Lecture 10)
	Midterm exam- date: 4.12.2025
Week XI (11.12)	Function of more than one variable (Multivariable calculus). Partial
	derivatives. Partial and cross-partial elasticity. Extreme values (free
	extrema). (2L- Lecture 11)
	Integrals (2E)
Week XII (18.12)	Extreme values (constrained relative extrema). Lagrange's function.
	Absolute extrema. (2L- Lecture 12)
	ODE (2E)
	Remedial midterm exam- date: 18.12.2025
Week XIII (25.12)	Repetition & Preparation for the final exam (2L)
	Several variables. Relative & absolute extrema (2E)
Week XIV	National Holiday- no classes
Mandatory	Alpha C. Chiang Kevin Wainwright Fundamental Methods of
readings	Mathematical Economics, 4th edition, McGraw-Hill, 2005.
Semestral	Homeworks&Quizzes 10 points
assessment	Midterm 40 points
	Final exam 50 points
List of lecturers	Vladimir Kašćelan, Full Professor
(academic)	Milan Raičević, Teaching Assistant
Name of the	Vladimir Kašćelan, Full Professor
course	, and and an
coordinator	
Coorumator	

List of visiting	TBD
lecturers	
(experts),(where	
applicable)	